2025-07-31
I doesn’t move from bad to good and the differences are very small.
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: i_MADS ~ days_c + days_c2 + (1 | room_id)
Data: good_bad_data_small
REML criterion at convergence: 26984.8
Scaled residuals:
Min 1Q Median 3Q Max
-3.8546 -0.5424 -0.0288 0.5117 6.4138
Random effects:
Groups Name Variance Std.Dev.
room_id (Intercept) 0.5301 0.7281
Residual 0.4742 0.6886
Number of obs: 10450, groups: room_id, 3627
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -7.431e-04 1.571e-02 5.405e+03 -0.047 0.962
days_c 4.067e-02 7.284e-03 7.547e+03 5.584 2.43e-08 ***
days_c2 -4.067e-04 7.322e-03 7.414e+03 -0.056 0.956
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) days_c
days_c 0.067
days_c2 -0.453 -0.129
I moves from unable to able
More “good” representation = less sx (both between- and within-person)
More “able” representation = less sx (both between- and within-person)
No, all results hold when controlling for frequency of “I” and other words
No, all results hold when controlling for sentiment and emotion words and total WC.
No, control words ** the, and, to, be, a, we ** do not uniformly move along these axes and/or they do not relate to symptoms.
DLATK
AnalysesUsed median split for daysSinceFirstText
to create two groups Median treatment time = 35 days.
Built topic model from all sentences in Talksapace
data using bertopic
from sentences that had the word I in them.
Extracted the top 20 topics from the model
Looking at happy-sad, calm-anxious, can-cannot.
All models control for time in tx and are specified separately for each word.
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
Internalizing ~ daysSinceFirstText + can_MADS_within + can_MADS_between +
pct_can_within + pct_can_between + +emo_pos_within + emo_pos_between +
emo_neg_within + emo_neg_between + pct_i_within + pct_i_between +
tone_pos_within + tone_pos_between + tone_neg_within + tone_neg_between +
n_total_within + n_total_between + (1 | room_id)
Data: disaggregated
REML criterion at convergence: 26537.6
Scaled residuals:
Min 1Q Median 3Q Max
-3.4321 -0.5639 -0.0939 0.4863 4.7030
Random effects:
Groups Name Variance Std.Dev.
room_id (Intercept) 0.5107 0.7146
Residual 0.3589 0.5991
Number of obs: 11315, groups: room_id, 3409
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -1.544e-03 1.351e-02 3.394e+03 -0.114 0.908999
daysSinceFirstText -2.412e-01 6.379e-03 8.419e+03 -37.811 < 2e-16 ***
can_MADS_within -4.961e-02 7.114e-03 7.949e+03 -6.973 3.35e-12 ***
can_MADS_between 4.816e-02 1.406e-02 3.422e+03 3.424 0.000623 ***
pct_can_within 3.315e-03 6.751e-03 7.899e+03 0.491 0.623399
pct_can_between -5.857e-03 1.371e-02 3.458e+03 -0.427 0.669147
emo_pos_within -2.543e-02 8.340e-03 7.899e+03 -3.049 0.002306 **
emo_pos_between -8.367e-02 1.929e-02 3.478e+03 -4.337 1.48e-05 ***
emo_neg_within 3.397e-02 1.069e-02 7.899e+03 3.178 0.001487 **
emo_neg_between -2.377e-02 3.271e-02 3.421e+03 -0.727 0.467565
pct_i_within 4.422e-03 6.810e-03 7.899e+03 0.649 0.516111
pct_i_between 3.475e-02 1.392e-02 3.444e+03 2.496 0.012602 *
tone_pos_within -3.480e-02 8.430e-03 7.900e+03 -4.128 3.70e-05 ***
tone_pos_between -2.797e-02 1.953e-02 3.494e+03 -1.432 0.152148
tone_neg_within 1.198e-02 1.086e-02 7.903e+03 1.103 0.270108
tone_neg_between 2.203e-01 3.282e-02 3.421e+03 6.714 2.21e-11 ***
n_total_within -1.178e-02 6.809e-03 7.899e+03 -1.730 0.083715 .
n_total_between 1.833e-02 1.375e-02 3.417e+03 1.333 0.182747
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1